Natural Language Processing, Text Mining and Applications
The Track of Natural Language, Text Mining and Applications (NLP-TeMA 2023) is a forum for researchers working in Human Language Technologies, i.e. Natural Language Processing (NLP), Computational Linguistics (CL), Natural Language Engineering (NLE), Text Mining (TM), Information Retrieval (IR), and related areas.
The most natural form of sharing knowledge is indeed through textual documents. Especially on the Web, a huge amount of textual information is openly published every day, on many different topics and written in natural language, thus offering new insights and many opportunities for innovative applications of Human Language Technologies.
Following advances in general AI sub-fields such as NLP, Machine Learning (ML) and Deep Learning (DL), text mining is now even more valuable as tool for bridging the gap between language theories and effective use of natural language contents, for harnessing the power of semi-structured and unstructured data, and to enable important applications in real-world heterogeneous environments. Both hidden and new knowledge can be discovered by using NLP and Text Mining methods, at multiple levels and in multiple dimensions, and often with high commercial value.
TOPICS OF INTEREST
Natural Language Processing:
- Language and Cognitive Modeling
- Tagging, Chunking and Parsing
- Morphology and Word Segmentation
- Natural Language Generation
- Discourse and Pragmatics
- Sentence-level Semantics and Text Inference
- Language Resources: Acquisition and Usage. Lexical Knowledge Acquisition
- Entailment and Paraphrases
- Entity Recognition and Word Sense Disambiguation
- Distributional Models and Semantics
- Mathematical Properties of Language
- NLP for Low-Resource Languages
Text Mining and Applications:
- Text Clustering, Classification and Summarization
- Sentiment Analysis and Argument Mining
- Computational Social Science
- Multi-Word Units
- Machine Learning for NLP and Text Mining
- Spatio-Temporal and Big Text Mining
- Cross-Lingual Approaches
- Algorithms and Data Structures for Text Mining
- Information Retrieval and Information Extraction
- Question-Answering and Dialogue Systems
- Text-Based Prediction and Forecasting
- Web Content Annotation
- Health/Biomedical/Legal and other Text Mining Applications
ORGANIZATION COMMITTEE
- Joaquim Silva, FCT – Universidade Nova de Lisboa, Portugal
- Pablo Gamallo, Universidade de Santiago de Compostela, Spain
- Paulo Quaresma, Universidade de Évora, Portugal
- Irene Rodrigues, Universidade de Évora, Portugal
- Hugo Oliveira, Universidade de Coimbra, Portugal
Program COMMITEEE
- Adam Jatowt, Universit of Kioto, Japan
- Alberto Simões, Algoritmi Center, University of Minho, Portugal
- Alexandre Rademaker, IBM / FGV, Brazil
- Altigran Silva, Universidade Federal do Amazonas, Brasil
- Antoine Doucet, University of Caen, France
- António Branco, Universidade de Lisboa, Portugal
- Béatrice Daille, University of Nantes, France
- Bruno Martins, Instituto Superior Técnico – Universidade de Lisboa, Portugal
- Fernando Batista, Instituto Universitário de Lisboa, Portugal
- Gaël Dias, University of Caen Basse-Normandie
- Hugo Oliveira, Universidade de Coimbra, Portugal
- Irene Rodrigues, Universidade de Évora, Portugal
- Jesús Vilares, University of A Coruña, Spain
- Joaquim Ferreira da Silva, Faculdade de Ciências e Tecnologia – Universidade Nova de Lisboa
- Luisa Coheur, Universidade Técnica de Lisboa, Portugal
- Manuel Vilares Ferro, University of Vigo, Spain
- Mário Silva, Instituto Superior Técnico – Universidade de Lisboa, Portugal
- Nuno Marques, Universidade Nova de Lisboa, Portugal
- Pablo Gamallo, Universidade de Santiago de Compostela, Spain
- Paulo Quaresma, Universidade de Évora, Portugal
- Pavel Brazdil, University of Porto, Portugal
- Sophia Ananiadou, University of Manchester
- Sérgio Nunes, Faculdade de Engenharia – Universidade do Porto, Portugal
- Manex Agirrezabal, University of the Basque Country
- Miguel Alonso, Universidade da Coruña
- Marcos Garcia, Universidade de Santiago de Compostela
- Roney Santos, Universidade Federal do Piauí